Autonomous Training of Activity Recognition Algorithms in Mobile Sensors: A Transfer Learning Approach in Context-Invariant Views
نویسنده
چکیده
Wearable technologies play a central role in human-centered Internet-of-Things applications. Wearables leverage machine learning algorithms to detect events of interest such as physical activities and medical complications. A major obstacle in large-scale utilization of current wearables is that their computational algorithms need to be re-built from scratch upon any changes in the configuration. Retraining of these algorithms requires significant amount of labeled training data, a process that is labor-intensive and time-consuming. We propose an approach for automatic retraining of the machine learning algorithms in real-time without need for any labeled training data. We measure the inherent correlation between observations made by an old sensor view for which trained algorithms exist and the new sensor view for which an algorithm needs to be developed. Our multi-view learning approach can be used in both online and batch modes. By applying the autonomous multi-view learning in the batch mode, we achieve an accuracy of 83.7% in activity recognition which is an improvement of 9.3% due to the automatic labeling of the data in the new sensor node. In addition to gain the less computation advantage of incremental training, the online learning algorithm results in an accuracy of 82.2% in activity
منابع مشابه
Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملDetection of children's activities in smart home based on deep learning approach
Monitoring behavior of children in the home is the extremely important to avoid the possible injuries. Therefore, an automated monitoring system for monitoring behavior of children by researchers has been considered. The first step for designing and executing an automated monitoring system on children's behavior in closed spaces is possible with recognize their activity by the sensors in the e...
متن کاملPersonalised Online Activity Recognition with Smartphone Accelerometer
Mobile phone based activity recognition uses data obtained from embedded sensors to infer users physical activities. The traditional approach for activity recognition employs machine learning algorithms to learn from collected labelled data and induce a model. The model generation is usually performed offline on a server system and later deployed to the phone for activity recognition. This appr...
متن کاملFrom E-learning to Ubiquitous Learning; Theoretical Principles
Background: Because of approaches to learning in every place and at any time, ubiquitous learning with knowledge of the context and framework, and due to the development of wireless technologies and sensors, the learning process has changed. Mobile learning and ubiquitous learning as models of e-learning that refer to the acquisition of knowledge, attitudes and skills through wireless technolog...
متن کاملLearning to Select Object Recognition Methods for Autonomous Mobile Robots
Selecting which algorithms should be used by a mobile robot computer vision system is a decision that is usually made a priori by the system developer, based on past experience and intuition, not systematically taking into account information that can be found in the images and in the visual process itself to learn which algorithm should be used, in execution time. This paper presents a method ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017